Math 6261 23-03-10

Review.
(Lévy's Convergence Thy):
Let $\left(F_{n}\right)$ be a sequence of $D F_{s}$ with $C F_{s} \varphi_{n}$. Suppose that

$$
\lim _{n \rightarrow \infty} \varphi_{n}(\theta)=g(\theta)
$$

for some function $g: \mathbb{R} \rightarrow \mathbb{C}$. Furthermore, suppose g is cts at $\theta=0$.
Then $F_{n} \xrightarrow{\omega} F$ for some $C F F$ on \mathbb{R} and $g=\varphi_{F}$.
§3.3. The central limit theorem.
The 3.11 (CLT) Let $\left(X_{n}\right)$ be an i.i.d. sequence of r.v.'s with

$$
E\left(X_{n}\right)=0 \text { and } \operatorname{Var}\left(X_{n}\right)=\sigma^{2} \text {. }
$$

Write $S_{n}=X_{1}+\cdots+X_{n}$. Then for any $x \in \mathbb{R}$,

$$
P\left(\frac{S_{n}}{\sqrt{n} \delta} \leqslant x\right) \rightarrow \Phi(x):=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y
$$

as $n \rightarrow \infty$.
(standard normal distribution)

To prove the CLT, we give some Lemmas.

Lem 3.12. The CF φ of the standard normal distribution is given by

$$
\varphi(\theta)=e^{-\frac{1}{2} \theta^{2}}
$$

Pf. Notice that by def,

$$
\begin{aligned}
\varphi(\theta) & =\int_{\mathbb{R}} e^{i \theta x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x . \\
\varphi^{\prime}(\theta) & =\int_{\mathbb{R}} i x e^{i \theta x} \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2} d x \\
& =\int_{\mathbb{R}}-i e^{i \theta x} \cdot \frac{1}{\sqrt{2 \pi}} d\left(e^{-x^{2} / 2}\right) \\
& =\int_{\mathbb{R}} \frac{i}{\sqrt{2 \pi}} e^{-\left(x^{2} / 2\right)} d e^{i \theta x} \quad \text { (integration by part) } \\
& =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}}-\theta e^{i \theta x} e^{-x^{2} / 2} d x \\
& =-\theta \varphi(\theta)
\end{aligned}
$$

Hence $(\ln \varphi(\theta))^{\prime}=-\theta \Rightarrow \varphi(\theta)=c e^{-\theta^{2} / 2}$.
But $\varphi(0)=1$. So $\varphi(\theta)=e^{-\theta^{2} / 2}$.

Lem 3.13. For $n=0,1, \cdots$, and $x \in \mathbb{R}$, write

$$
R_{n}(x)=e^{i x}-\sum_{k=0}^{n} \frac{(i x)^{k}}{k!}
$$

Then

$$
\left|R_{n}(x)\right| \leqslant \min \left\{\frac{2|x|^{n}}{n!}, \frac{|x|^{n+1}}{(n+1)!}\right\}
$$

Pf. Notice that

$$
R_{0}(x)=e^{i x}-1=\int_{0}^{x} i e^{i y} d y
$$

From these two expressions we obtain

$$
\left|R_{0}(x)\right| \leqslant \min \{2,|x|\} .
$$

Since

$$
R_{n}(x)=\int_{0}^{x} i R_{n-1}(y) d y \quad \text { for } n \geqslant 1 \text {, }
$$

We obtain the desired inequality by induction.

Lem 3.14. For $|z|<1 / 2$,

$$
\text { Pf. } \quad \begin{aligned}
|\log (1+z)-z| & <|z|^{2} \\
\log (1+z)-z & =\int_{0}^{z} \frac{-w}{1+w} d w \\
& =z^{2} \int_{0}^{1} \frac{-t d t}{1+z t}
\end{aligned}
$$

Hence $|\log (1+z)-z| \leqslant|z|^{2} \int_{0}^{1} 2 t d t=|z|^{2}$.

Pf of the CLT:
Let φ denote the $C F$ of X. Recall that $E X=0, E X^{2}=\sigma^{2}$.
then $\varphi(\theta)-\left(1-\frac{1}{2} \sigma^{2} \theta^{2}\right)$

$$
\begin{aligned}
& =\int e^{i \theta x} d \mu(x)-\int\left(1+i \theta x+\frac{(i \theta x)^{2}}{2}\right) d \mu(x) \\
& =\int R_{2}(\theta x) d \mu(x)
\end{aligned}
$$

By Lem 3.13,

$$
\begin{aligned}
\left|R_{2}(\theta x)\right| & \leqslant \min \left\{\frac{2|\theta x|^{2}}{2!}, \frac{|\theta x|^{3}}{3!}\right\} \\
& =\theta^{2} \cdot \min \left\{|x|^{2}, \frac{\theta|x|^{3}}{6}\right\} .
\end{aligned}
$$

It follows that

$$
\left|\varphi(\theta)-\left(1-\frac{1}{2} \sigma^{2} \theta^{2}\right)\right| \leqslant \theta^{2} \cdot \int \min \left\{|x|^{2}, \frac{\theta|x|^{3}}{6}\right\} d \mu(x)
$$

By the DCT, $\quad \lim _{\theta \rightarrow 0} \int \min \left\{|x|^{2}, \frac{\theta|x|^{3}}{6}\right\} d \mu(x)=0$.
It follows that

$$
\varphi(\theta)=1-\frac{1}{2} \sigma^{2} \theta^{2}+o\left(\theta^{2}\right) .
$$

Note that

$$
\begin{aligned}
\varphi_{\frac{s_{n}}{\sigma \sqrt{n}}}(\theta) & =\varphi\left(\frac{\theta}{\sigma \sqrt{n}}\right)^{n} \\
& =\left(1-\frac{1}{2} \frac{\theta^{2}}{n}+\sigma\left(\frac{\theta^{2}}{n}\right)\right)^{n}
\end{aligned}
$$

Hence

$$
\log \oint_{\frac{s_{n}}{\sigma \sqrt{n}}}(\theta)=n \log \left(1-\frac{1}{2} \frac{\theta^{2}}{n}+o\left(\frac{\theta^{2}}{n}\right)\right)
$$

By lem 3.14,

$$
\begin{aligned}
\log \left(1-\frac{1}{2} \frac{\theta^{2}}{n}+0\left(\frac{\theta^{2}}{n}\right)\right) & -\frac{1}{2} \frac{\theta^{2}}{n}-0\left(\frac{\theta^{2}}{n}\right) \\
= & o\left(\frac{\theta^{4}}{n^{2}}\right)
\end{aligned}
$$

Hence

$$
n \log \left(1-\frac{1}{2} \frac{\theta^{2}}{n}+0\left(\frac{\theta^{2}}{n}\right)\right) \rightarrow-\frac{1}{2} \theta^{2}
$$

That is,

$$
\varphi_{\frac{S_{n}}{\sigma \sqrt{n}}}(\theta) \longrightarrow e^{-\frac{1}{2} \theta^{2}}
$$

By Levy's convergence The,

$$
P\left(\frac{S_{n}}{\sigma \sqrt{n}} \leqslant x\right) \rightarrow \Phi(x)
$$

Remark: Pairwise independence is good enough for the SLLN. However it is not good enough for the CLT; see the example below.

Example Let $\xi_{1}, \cdots, \xi_{n}, \cdots$, be i.i.d with

$$
P\left(\xi_{i}=1\right)=P\left(\xi_{i}=-1\right)=\frac{1}{2} .
$$

Set $S_{2^{n}}=\xi_{1}\left(1+\xi_{2}\right)\left(1+\xi_{3}\right) \cdots\left(1+\xi_{n+1}\right)$

$$
= \begin{cases}2^{n} & \text { with prob. } 2^{-n-1}, \\ 0 & \text { with prob. } 1-2^{-n-1} .\end{cases}
$$

Notice that $S_{2^{n}}$ is the sum of 2^{n} r.v.'s
$\xi_{1}, \xi_{1} \xi_{2}, \xi_{1} \xi_{3}, \cdots$ (the terms in the expansion of the product in defining $S_{2^{n}}$)
which are pairwise independent, each of them has the same distribution as ξ_{i}.

Clearly $\frac{S_{2^{n}}}{\sqrt{2^{n}}}$ does not converge weakly to the standard normal distribution.

- The following result gives the rate of convergence in the CLT

Thy 3.15. (Berry-Esseen Thm).
Let X_{1}, X_{2}, \cdots, be i.i.d. with $E X_{i}=0, E X_{i}^{2}=\sigma^{2}$
and

$$
E\left|x_{i}\right|^{3}=\rho<\infty
$$

Then

$$
\left|P\left(\frac{S_{n}}{\sigma \sqrt{n}} \leqslant x\right)-\Phi(x)\right| \leqslant \frac{3 \rho}{\sigma^{3} \cdot \sqrt{n}} \text { for all } x \in \mathbb{R} \text {. }
$$

- Below is a famous result of Kolmogrov on the convergence rate in the SLLN.

Thy 3.16 (Kolmogrov's law of iterated logarithm)
Let X_{1}, X_{2}, \cdots, be i.i.d. with $E\left(X_{i}\right)=0$ and $\operatorname{Var}\left(X_{i}\right)=1$.
Then almost surely,

$$
\overline{\lim }_{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=1, \quad \lim _{n \rightarrow \infty} \frac{S_{n}}{\sqrt{2 n \log \log n}}=-1
$$

where $S_{n}=X_{1}+\cdots+X_{n}$.

Below we state the CLT in \mathbb{R}^{d}.

The 3.17. Let X_{1}, X_{2}, \cdots, be i.i.d. random vectors in \mathbb{R}^{d} with $E X_{n}=\mu$, and finite covariances

$$
\Gamma_{i, j}=E\left(\left(X_{n, i}-\mu_{i}\right)\left(X_{n, j}-\mu_{j}\right)\right) \quad \text { for } 1 \leqslant i, j \leqslant d .
$$

Set $S_{n}=X_{1}+\cdots+X_{n}$. Then

$$
\frac{S_{n}-n \mu}{\sqrt{n}} \xrightarrow{w} X
$$

where X has a multivariate normal distribution with mean 0 and covariance $\Gamma=\left(\Gamma_{i, j}\right)$.

