Lem 3.13. For
$$n=0, j, ..., and x \in [\mathbb{R}, white
$$R_{n}(x) = e^{jx} - \frac{n}{2} \frac{(jx)^{n}}{\Re'}$$
Then

$$|R_{n}(x)| \leq \min\left\{\frac{2|x|^{n}}{n!}, \frac{|x|^{n+1}}{(n+1)!}\right\}$$
Pf. Notice that

$$R_{0}(x) = e^{jx} - 1 = \int_{0}^{x} i e^{jy} dy.$$
From these two expressions we obtain

$$|R_{0}(x)| \leq \min\left\{2, (x1)\right\}.$$
Since

$$R_{n}(x) = \int_{0}^{x} i R_{n-1}(y) dy \quad \text{for } n \geq 1,$$
We obtain the desired inequality by induction, (7)

$$|we obtain the desired inequality by induction, (7)$$

$$|we obtain the desired inequality dw = 2\int_{0}^{2} \frac{-w}{1+w} dw$$

$$= 2\int_{0}^{4} \frac{-t}{1+2t} dt$$$$

Hence
$$|o_{\delta}(1+2)-2| \leq |2|^{2} \int_{0}^{1} 2t \, dt = |2|^{2}$$
.
Pf of the CLT:
Let G denote the CF of X. Recall that $E = 0$, $E = 2^{2} = 3^{2}$.
Then $G(0) = (1 - \frac{1}{2} d^{2} \theta^{2})$
 $= \int e^{i\Theta x} d\mu(x) = \int (1 + i\Theta x + (\frac{i\Theta x}{2})^{2}) d\mu(x)$
 $= \int R_{2}(\Theta x) d\mu(x)$
By Lem 3.13, $|R_{2}(\Theta x)| \leq \min \{ \frac{2}{2!} \frac{|\Theta x|^{2}}{2!}, \frac{|\Theta x|^{3}}{3!} \}$
 $= \Theta^{2} \cdot \min \{ |x|^{2}, \frac{\Theta |x|^{3}}{6} \}$.
It follows that
 $|G(0) = (1 - \frac{1}{2} d^{2} \theta^{2} + 0) = 0$.
It follows that
 $G(0) = (1 - \frac{1}{2} d^{2} \theta^{2} + 0) = 0$.

Remark. Pairwise independence is good enough for
the SLLN. However it is not good enough
for the CLT; See the example below.
Example Let
$$\underline{3}_{1}, \dots, \underline{3}_{n}, \dots$$
, be i.i.d with
 $P(\underline{3}_{i} = 1) = P(\underline{3}_{i} = -1) = \underline{1}_{2}$.
Set $S_{2^{n}} = \underline{3}_{1} (H \underline{3}_{2}) (H \underline{3}_{3}) \cdots (H \underline{3}_{n+1})$
 $= \{2^{n} \text{ with prob. } 2^{n-1},$
Notice that $S_{2^{n}}$ is the sum of 2^{n} r.v.'s
 $\underline{5}_{i}, \underline{5}_{i}, \underline{5}_{i}, \underline{5}_{i}, \cdots$ (the terms in the expansion
of the product in defining $S_{2^{n}}$)
which are pairwise independent, each of them has the
same distribution as $\underline{5}_{1}^{n}$.

• The following result gives the rate of convergence in the CLT
Thm 3.15. (Berry - Esseen Thm).
Let X₁, X₂,..., be i.i.d. with
$$EX_i=0$$
, $EX_i^2 = 3^2$
and
 $E|X_i|^3 = p < \infty$.
Then
 $\left| P(\frac{S_n}{d \ln} \le x) - \overline{\Phi}(x) \right| \le \frac{3p}{3^3 \sqrt{n}}$ for all $x \in \mathbb{R}$.
• Below is a famous result of Kolmogrov on the Convergence rate
in the SLLN.
Then 3.16 (Kolmogrov's law of iterated logarithm)
Let X₁, X₂,..., be i.i.d. with $E(X_i) = 0$ and $Var(X_i) = 1$.
Then almost surely,
 $\overline{I_{inv}} = \frac{S_n}{\sqrt{2n \log \log n}} = 1$, $\frac{I_{inv}}{n \rightarrow \infty} = \frac{S_n}{\sqrt{2n \log \log n}} = -1$,
where $S_n = X_1 + \dots + X_n$.

Below we state the CLT in
$$\mathbb{R}^d$$
.
The 3.17. Let X₁, X₂,..., be i.i.d. random vectors in \mathbb{R}^d
with $E X_n = \mu$, and finite covariances
 $\Gamma_{i,j} = E((X_{n,i} - \mu_i)(X_{n,j} - \mu_j))$ for $l \le i, j \le d$.
Set $S_n = X_1 + \dots + X_n$. Then
 $\frac{S_n - n\mu}{\sqrt{n}} \xrightarrow{W} X_{,}$
where χ has a multivariate normal distribution with
mean o and covariance $\Gamma = (\Gamma_{i,j})$.